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The �-electronic structure of graphene in the presence of a modulated electric potential is investigated by the
tight-binding model. The low-energy electronic properties are strongly affected by the modulation period and
potential strength. Such a potential could modify the energy dispersions, destroy state degeneracy, and induce
band-edge states. One striking feature happens close to the Fermi level that the light-cone structure is replaced
with two distinct kinds of valley structures with highly anisotropic energy dispersion. Both valleys are high-
lighted by the existence of the quasi-one-dimensional electronic states, whereas they are distinguished one
from the other by the different directions of restricted motion of charge carriers. It should be noted that a
modulated electric potential could make semiconducting graphene semimetallic, and that the onset period of
such a transition relies on the field strength. The finite density of states �DOS� at the Fermi level means that
there are free carriers, and, at the same time, the low DOS spectrum exhibits many prominent peaks, mainly
owing to the band-edge states.
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I. INTRODUCTION

Carbon atoms could form diamond, graphites, carbon
nanotubes, C60-related fullerenes, carbon onions, and carbon
tori. These systems own special symmetric configurations,
and their dimensionalities range from three dimensional �3D�
to zero dimensional �0D�. These systems are of great interest
to community because of their spectacular physical proper-
ties to which the unique geometric structures give rise. Re-
cently, a new carbon-based material is discovered by the suc-
cess in experimental realization of fabricating a single
graphene sheet,1,2 and immediately this unique two-
dimensional �2D� system becomes the focus of both theoret-
ical and the experimental researches. One of the unique
physical properties of the kind of system, for example, is the
observation of an anomalous quantum Hall effect,3 where the
plateau of zero Hall conductance is unexpectedly absent. The
novel phenomenon of Hall conductivity quantization is at-
tributed to that the dynamics of quasiparticles in graphene is
effectively relativistic, contrasting sharply with the conven-
tional integer quantum Hall effect in the regular 2D electron
system that is governed by the Schrödinger fermions.

Graphene has a honeycomb crystal structure with two dis-
tinct triangular sublattices A and B. This real-space structure
corresponds to a triangular lattice in the reciprocal space,
which also defines a hexagonal Brillouin zone with two in-
equivalent corners K and K�. The unique geometrical con-
figuration of graphene leads to several nontrivial character-
istics of its energy spectrum. There exist two identical low-
energy bands in the vicinity of the two inequivalent corners,
of which each exhibits a linear energy dispersion with con-
duction and valence bands crossing right at the corner. The
highly diminished Fermi surface gives rise to a zero density
of states �DOS� at the Fermi level, so graphene is a zero-gap
semiconductor.

Studying the behavior of electrons under various kinds of
external fields is not only of vital importance for understand-
ing their physical nature of materials but also helpful for
designing novel devices or developing applications. Many

researches have been conducted on the physical properties of
graphene, such as electronic properties,4–6 transport
properties,1,7–10 optical properties,11–13 and electronic
excitations.14–16 Here we focus on the effects of modulated
fields on the electronic properties, an intriguing field of less
exploration.17–24 The systems for graphene in the modulated
fields are not yet realized experimentally; however, the 2D
free electron gas formed by GaAs/AlGaAs heterojunctions in
modulated fields are well-established systems and have been
subject of active studies in the past two decades.25–28 For the
2D free electron gas, there are probably two types of periodic
modulations in actual systems. One is an electrostatic modu-
lation and the other is a magnetic-field modulation. The
former can be realized by a periodic array of gate
electrodes26 and the latter by depositing magnetic materials
on the surface.27,28 In the case of magnetic modulation, the
electronic properties of graphene have been recently
studied.21,23,24 In this paper, we would like to further inves-
tigate the electronic properties of graphene in a modulated
electric potential. The tight-binding model is employed to
calculate the energy spectrum and the density of states. Both
are analyzed as functions of the field strength, the period,
and the direction by solving the Hamiltonian matrix numeri-
cally. In this work, it is shown that semiconducting graphene
can be made semimetallic by applying a modulated electric
potential. Any finite value of field strength will cause such a
transition with a prerequisite that the period of modulated
potential is longer enough. However, a qualitative study, re-
cently made by other authors, on the Dirac particles tunnel-
ing through a one-dimensional potential barrier predicts that
the 2D light-cone structure is still preserved under such a
field.20 The underlying reason causing the different findings
is elaborated in Sec. III.

This paper is organized as follows. The tight-binding
Hamiltonian matrix in a periodic electric potential is derived
in Sec. II. The main characteristics of the �-electronic struc-
tures are discussed in Sec. III. Finally, Sec. IV contains con-
cluding remarks.
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II. MODEL AND METHODS: TIGHT-BINDING MODEL

The �-electronic structure of graphene is calculated by
the tight-binding model within the nearest-neighbor interac-
tions. Given that graphene is a two-dimensional triangular
lattice with two-point basis, we construct the �-electronic
eigenfunction of the system as follows:

��k� = Ck
A��k

A� + Ck
B��k

B� , �1�

where the tight-binding Bloch function ��k
A� ���k

B�� is the
superposition of the 2pz orbitals from periodic A �B� atoms.
The coefficients are obtained by diagonalizing the Hamil-
tonian matrix in the space spanned by the tight-binding
Bloch functions. Moreover, with the two prerequisites that
site energies for A and B atoms are the same, and that intra-
sublattice hoppings are ignored, we can set ��k

A�H0��k
A�

= ��k
B�H0��k

B�=0. The nonvanishing matrix elements are
given by

��k
B�H0��k

A� =
1

N
�
Ti

�0 exp�− ik · Ti� 	 �
i

tik, i = 1,2,3,

�2�

where �0	
�pz

� �r−RA�H0�pz
�r−RA−Ti�d3r�2.6 eV is the

nearest-neighbor hopping integral with RA being the lattice
vector and �pz

being the atomic 2pz orbital. Ti are the vectors
connecting a carbon atom to its three nearest neighbors, and
they are given by T1= �b /2,�3b /2�, T2= �b /2,−�3b /2�, and
T3= �−b ,0�, where b=1.42 Å is the C-C bond length. tik,
denoting individual hopping process, is then explicitly given
by t1k=�0 exp�ikxb /2+ iky

�3b /2��, t2k=�0 exp�ikxb /2
− iky

�3b /2��, and t3k=�0 exp�−ikxb�. After specifying the
matrix elements, the zero-field Hamiltonian is expressed as
the following 2�2 Hermitian matrix:

� 0 �
i

tik
�

�
i

tik 0 � . �3�

The Hamiltonian matrix can be solved analytically and it
generates two energy dispersions represented by E��k�
= ��01+4 cos2��3kyb /2�+4 cos��3kyb /2�cos�3bkx /2��1/2.
The low-energy spectrum shows symmetry between two val-
leys �around K and K��, where both have the identical light-
cone structure described by the relation E��q�= �	F�q�, with
light velocity 	F	3b�0 /2 and momentum q measuring the
difference q=k−kK �k−kK�� in wave vector k and corner kK
�kK�� of the Brillouin zone.

Consider graphene that exists in a 1D modulated potential
U�x� along the armchair direction �x̂� and the potential pro-
file is assumed to take the form U�x�=V0 cos�2�x / lE� with
V0 being the field strength. For convenience, the period lE is
further designed to be a multiple of 3b, with lE=3bRE. In
doing so, the periodicity caused by such a field is made com-
mensurate with the crystal potential of graphene itself, which
helps define a primitive cell. The rectangular primitive cell is
enlarged to include 4RE carbon atoms denoted as An �Bn�
with n=1,2 , . . . ,2RE for A- �B-� type carbon atoms Fig.

1�a��. The corresponding rectangular Brillouin zone shrinks
to be 1 /2RE of the original hexagonal Brillouin zone and its
dimension along the modulated direction ��kx�
� /3bRE� is
relatively shorter than the other one ��ky�
� /�3b�, as shown
in Fig. 1�b�. The eigenfunction of a system is the superposi-
tion of elements in the basis composed of 4RE Bloch func-
tions,

���k
A1�, ��k

B1�, ��k
A2�, ��k

B2�, . . . ��k
A2RE−1�, ��k

B2RE−1�,

��k
A2RE�, ��k

B2RE�� ,

and is represented as

��k� = � Ck
An��k

An� + Ck
Bn��k

Bn� . �4�

When the period is sufficiently large, the effects of the elec-
tric potential on the off-diagonal matrix elements are negli-
gible. Meanwhile, the diagonal matrix elements would be-
come

��k
An�H��k

An� = V0 cos�n − 1��/RE� 	 Un,

��k
Bn�H��k

Bn� = V0 cos�n − 2/3��/RE� 	 Un+1/3, �5�

where H=H0+U is the total Hamiltonian. In effect, the as-
sumption made above is plausible. The period ��0.1 m� in
a typical experimental setup is still much longer than the
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FIG. 1. �Color online� �a� The rectangular primitive cell of
graphene in a modulated electric potential along the armchair direc-
tion �x̂�. The rectangular first Brillouin zone is shown in �b�, and the
hexagon is that without external fields. The ky-dependent low-
energy bands without any fields at RE=250 is shown in �c� for kx

=0 �black solid lines� and kx=2� /3bRE �blue dotted lines�.
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extension of atomic 2pz orbital ��1 Å�, so the atomic or-
bital feels approximately a constant potential within its dis-
tribution. To facilitate the calculation, the basis functions are
further rearranged in a specific sequence to obtain the band
Hamiltonian matrix

���k
A1�, ��k

B2RE�, ��k
B1�, ��k

A2RE�, . . . ��k
ARE�, ��k

BRE+1�, ��k
BRE�, ��k

ARE+1�� .

The band Hamiltonian matrix of graphene in a modulated
electric potential along the armchair direction is written as

�
U1 q p� 0 . . . . . . 0 0

q� U2RE+1/3 0 p 0 . . . . . . 0

p 0 U4/3 0 q� 0 . . . 0

0 p� 0 U2RE
0 q 0 0

] � q 0 U2 � � 0

] . . . � q�
� � 0 p

0 ] ] � � 0 URE+1/3 q�

0 0 0 0 0 p� q URE+1

�
�6�

with p	 t1k+ t2k and q	 t3k.
Graphene owns the anisotropic geometry, so that the

�-electronic structure could depend on the modulation direc-
tion. When the modulation direction is changed into the zig-
zag direction �x̂�, the diagonal matrix element becomes

��k
An�H��k

An� = ��k
Bn�H��k

Bn� = Un. �7�

In this case, the period is designed as lE� =�3bRE for the same
reason mentioned earlier in the armchair case. The corre-
sponding rectangular Brillouin zone also shrinks to be 1 /2RE
of the original hexagonal Brillouin zone and its dimension is
characterized by �kx�
� /�3bRE along the zigzag direction
and �ky�
� /3b along the other. The Hamiltonian matrix can
be easily constructed in a similar way to that in the armchair
case �not shown here�.

In the following discussion, we will consider the situation
that the actual modulation period is about submicron length,
which corresponds to RE�250. This involves a process of
diagonalizing a very large Hamiltonian matrix, and it is
solved numerically to obtain the energy bands. Due to the
resulting unoccupied conduction bands �Ec� and occupied
valence bands �Ev� symmetric about the Fermi level �EF
=0�, we only discuss the former.

III. ELECTRONIC PROPERTIES

Before presenting the results under a modulated electric
potential, a brief review of the main features of low-energy
bands of the zero-potential system is made. As mentioned
earlier, the low-energy band structure has a linear energy
dispersion around K or K� of the hexagon. However, it is not
convenient to compare directly with the coming case when a
modulated potential is present because they are presented in
different Brillouin zones. To treat them on an equal footing,
the unit cell of the zero-field system is chosen to be identical
to the primitive cell of the system in a modulated potential.

That is, if the modulated field has a period RE, the unit cell is
chosen to be 2RE times its primitive cell. In this way, all
electronic states in the hexagonal Brillouin zone are folded
into a rectangular one. Notice that such a folding method
guarantees not to change any features of the original band
structure. Figure 1�c� shows the ky dependence of the low-
energy spectrum at RE=250 for kx=0 �black solid lines� and
kx=� /3bRE �blue dotted lines�. There exists a nondegenerate
1D linear band and doubly degenerate 1D parabolic bands
for kx=0, while they are purely doubly degenerate 1D para-
bolic bands for kx=� /3bRE. The evolution of bands from
kx=0 to kx=� /3bRE fills the states between them, which
reflects the 2D characteristic of the light-cone structure.
�This energy spectrum corresponds to one of the two valleys
containing the Dirac point K now located at kx=0 and ky
=2� /3�3b.� Above the Dirac point, there exists a local
minima for each 1D parabolic band. Notice that these points
should not be considered as band-edge states. For these
states, the kx-dependent energy dispersion is linear with non-
zero first derivative, so they cannot be treated as critical
points in the energy-momentum space. The band structure is
in all respects the same as one before folding the zone. Al-
though this alternative representation of band structure some-
what complicates the explanation, it is advantageous for the
following discussion to compare the zero-potential system
and the system in a modulated electric potential.

A modulated electric potential has a strong effect on the
energy dispersions, state degeneracy, and band-edge states.
The ky-dependent conduction bands for kx=0 �black solid
lines� and kx=� /3bRE �blue dotted lines� are shown in Fig.
2�a� for the modulated electric potential along the armchair
direction with the period RE=250 ��100 nm� and the
strength V0=0.025�0. Moreover, the potential mainly affects
the structure of some low 1D bands. The original doubly
degenerate parabolic bands are split. The energy dispersions
around ky =2� /3�3b	ky

K are strongly deformed and induce
several band-edge states which are saddle points in the
energy-momentum space. These band-edge states always ap-
pear in pairs at two sides of ky

K and two band-edge states in
each pair might have small energy difference. Far away from
ky

K, the spectrum is almost linear for the ky dependence, while
it becomes dispersionless for the kx dependence, which can
been seen in Fig. 2�a� where the bands for kx=0 and kx
=� /3bRE have identical dispersion. It is important to note
that there exist more Fermi momentum states kF’s. The en-
ergy dispersions near kF’s are linear for the ky dependence,
while they are completely flat for the kx dependence. The
dispersionless feature means that the number of the Fermi-
momentum states is infinite, which sharply contrasts with the
original two Fermi-momentum states or Dirac points in zero-
field graphene. Besides, the nonzero measure of the Fermi
surface indicates finite value of the DOS at the Fermi level.

The aforementioned features might rely on the strength,
period, and direction of a modulated electric potential. The
modulation effects are even enhanced when potential is
strengthened, as illustrated in the Fig. 2�b�. When the
strength increases, more low 1D bands are affected. The en-
ergy bands are further deformed and more band-edge states
are created. In addition, the number of Fermi-momentum
states increases almost linearly with the potential strength.
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For the case in Fig. 2�b�, the number of Fermi-momentum
states is approximately double of that in Fig. 2�a�. The modu-
lation period can also affect the numbers of band-edge states
and Fermi-momentum states, as shown in Fig. 2�c�. When
the period increases, more band-edge states are created. The
number of Fermi-momentum states remains almost un-
changed in the long-period regime, whereas there is a drastic
change in the short-period regime. The former can be under-
stood by taking into consideration both the accompanying
reduced kx length and increased kF’s associated with different
ky’s in accordance with the increasing period, while the latter
will be discussed later by calculating the density of states at
the Fermi level. The low-energy bands are, on the other
hand, not sensitive to the direction of a modulated electric
potential. Figure 2�d�, for example, presents the bands for the
potential modulated along the zigzag direction.

A closer examination of energy states around the Fermi
level reveals the highly anisotropic properties of quasiparti-
cles. For that, we present the contour plots around the Fermi

level of the lowest conduction band in Figs. 3�a�–3�d�, in
which Figs. 3�a� and 3�b� Figs. 3�c� and 3�d�� are the energy
contours corresponding to the lowest conduction band of Fig.
2�a� Fig. 2�b��. The energy dispersion around the Dirac
point Fig. 3�a�� shows that the group velocity of quasiparti-
cles is strongly renormalized perpendicular to the modulation
direction whereas it is not renormalized at all parallel to the
modulation direction. As the potential strength is raised, the
group velocity along the y direction is further reduced, and
approaches zero, as shown in Fig. 3�c�. This unique behavior
is attributed to the chirality of charge carriers, which was
also reported by Park et al.29,30 recently. On the other hand,
there are other band crossings Figs. 3�b� and 3�d�� occurring
at the Fermi level far away from the Dirac point. Very dif-
ferently, the quasiparticles here dramatically change their
character in such a way that the energy dispersion is almost
linear along the ky direction and dispersionless along the
other. In general, the two above-mentioned kinds of distinct
valley structures associated with states near the Fermi level
are of equal importance in studying essential physical prop-
erties. However, as we have indicated in the paper, the finite
DOS at the Fermi level is mainly due to the states coming
from the valleys far away from the Dirac point. This implies
that they form the majority of charge carriers as the potential
strength is increased and thus dominate the essential physical
properties.

FIG. 2. �Color online� The ky-dependent low-energy bands in
the modulated potential along armchair direction with V0

=0.025�0 and RE=250 for kx=0 �black solid lines� and kx

=2� /3bRE �blue dotted lines� those in a stronger potential with
V0=0.05�0 and those in the potential of a longer period RE=500
are, respectively, shown in �a�, �b�, and �c�. �d� is the ky dependence
of low-energy bands at V0=0.025�0 and RE=433 with the potential
modulating along the zigzag direction for kx=0 �black solid lines�
and kx=2� /�3bRE �blue dotted lines�. Notice that the actual peri-
ods in �a� and �d� are almost of equal length, and that the units of ky

are different for armchair �� /�3b� and zigzag �� /3b� directions.
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FIG. 3. �Color online� The contour plot of the first conduction
band around the Fermi level for the considered modulated electric
potentials with V0=0.025�0 and RE=250 in �a� and �b� and V0

=0.05�0 and RE=250 in �c� and �d�. The energy difference between
neighboring contours is 1.0�10−3�0. For clarity, the origin of co-
ordinate ky is shifted to ky =ky

K.
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The essential features of electronic structure are directly
reflected on the density of states and defined as

D��� = �
�,h=c,v

�
1st BZ

dkxdky

�2��2

�

�

1

� − Eh�kx,ky��2 + �2 . �8�

� �=5�10−5�0� is the phenomenological broadening param-
eter. Because of the linear energy dispersion, the low-
frequency DOS without potentials is proportional to �, as
shown by dotted line in Fig. 4�a�, and it has no special struc-
tures. The vanishing DOS at EF=0 indicates that graphene is
a zero-gap semiconductor. A modulated electric potential can
lead to many prominent peaks and a finite DOS at �=0
Figs. 4�a�–4�d��. The peak structures come from the band-
edge states of parabolic bands Figs. 2�a�–2�d��. The fre-
quency, number, and height of peaks are sensitive to the
changes in the potential strength and period. The DOS at the
Fermi level means that there are free carriers, so graphene
becomes a semimetal in the presence of a modulated electric
potential. The value of DOS at �=0 grows as the potential
strength increases Figs. 4�a� and 4�b��. However, it does not
change significantly as the period is varied Fig. 4�c��. More-
over, the low-frequency DOS is unaltered when the modula-
tion direction changes Fig. 4�d��, which reflects the isotropic

symmetry of graphene in the low-energy spectrum.
The singularities in the DOS might cause special struc-

tures in some physical quantities, for example, giving rise to
the strong absorption peaks in optical measurements, so it is
worthy to investigate their properties in detail. The peak
height, number, and frequency are dominated by the strength
and period of the potential Figs. 4�a�–4�c��. The peak height
is enhanced by the increasing strength, whereas it is reduced
by the increasing period. The peak number is increased by
both the increasing strength and period. The relations be-
tween the peak frequency ��be� and the field condition are
elaborated through examining the first four prominent peaks,
as shown in the Fig. 5�a� for the strength dependence and
Fig. 5�b� for the period dependence. From these, it is ob-
served that the peak frequency weakly depends on the
strength, while it declines gradually and presents somewhat
oscillatory behavior as the period increases.

The nonzero DOS at the Fermi level, in connection with
the degree of band overlap between conduction and valence
bands, serves as an indicator of the semimetallic transition.
Here, we examine the relationship between the DOS at �
=0 and the potential strength, and that between the DOS at
�=0 and the modulation period. Referring to Fig. 6�a�,
D��=0� shows a nearly linear variation with the potential
strength. This relation just reflects the fact that the number of
Fermi-momentum states is approximately proportional to po-
tential strength. On the other hand, the period dependence of
D��=0� exhibits different features in short- and long-period
regimes, as shown in Fig. 6�b�. The two regimes are distin-
guished by a threshold period Rth, which happens at RE
�100 for V0=0.025�0 black triangles in Fig. 6�b�� and be-
comes shorter as the potential strength gets stronger red
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circles in Fig. 6�b��. For RE�Rth, D��=0� remains zero as
RE increases from zero, which implies that the 2D light-cone
structure is not affected at such a short period. As RE is
increased to cross Rth, D��=0� quickly grows and saturates
to a definite value, with some fluctuations in the long-period
regime. If one considers a realistic experimental system, the
typical modulation period will be about submicron or even
longer. D��=0� then would fall into the long-period regime,
so its value does not change significantly as the period is
somewhat varied. In other words, this feature should be very
robust even there exist some inevitable period fluctuations
coming from processing devices or experimental setups.

These interesting features, including potential-induced
band-edge states and the semimetallic behavior of graphene,
caused by a modulated electric potential are the main results
in this work. Nevertheless, the semimetallic behavior, the
most important feature, was not obtained in a recent study.20

The study considered graphene subjected to a square-
wavelike modulated potential, concluding that the 2D light-
cone structure is still preserved. Although the conclusion
seems to contradict with our results given here, a in-depth

examination shows that this is not the case. The main dis-
crepancy lies in the fact that the modulation period used
�20 nm�RE=50� in their calculation is too short to achieve
the threshold �Rth�, so that the semimetallic behavior was not
observed. To clarify this point, the dependence of D��=0�
on the potential strength and the modulation period for a
square-wave potential is calculated here, as shown by green
squares in Figs. 6�a� and 6�b�, respectively. D��=0� in Fig.
6�a� exhibits a linear relation with the potential strength,
which is similar to the cosine-wave potential. The threshold
period in this case is Rth�100 Fig. 6�b��, which is close to
that in the cosine-wave potential. As a result, from Fig. 6�b�,
it self-evidently explains the reason why the semimetallic
behavior is not observed by other authors solely because that
RE taken in their calculation is less than Rth.

IV. CONCLUDING REMARKS

In summary, the tight-binding model is used to investigate
the effects of a modulated electric potential on the
�-electronic structure of graphene. The low-energy elec-
tronic properties are mainly dominated by the potential
strength and period. However, they are not sensitive to the
potential direction, which is due to the isotropy of the origi-
nal low-energy bands. A modulated electric potential drasti-
cally changes the energy dispersions, state degeneracy, and
band-edge states. Close to the Fermi level, the light-cone
structure is replaced with two distinct kinds of valley struc-
tures with highly anisotropic energy dispersions. Both kinds
of valley structures can exhibit dispersionless feature in one
direction, with one kind being perpendicular to the modula-
tion direction whereas the other being parallel to it. Notice
that the dispersionless feature gives rise to infinite Fermi-
momentum states. The density of states exhibits a lot of
prominent peaks. These structures are mainly determined by
the energy dispersions and the band-edge states. The finite
DOS at the Fermi level indicates the existence of free carri-
ers. The semiconducting graphene becomes semimetallic by
applying a modulated electric potential, as long as the period
surpasses a threshold period �RE�Rth�. Different nature of
the low-energy excitations for graphene in the presence of a
modulated potential is expected to give rise intriguing physi-
cal properties. For instance, the free electrons are expected to
cause the low-frequency plasmon. The theoretical predic-
tions could be tested by the experimental measurements on
the energy loss spectra.
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